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Characterizing the interactions between colloidal particles is important, both from a fundamental perspective
as well as due to its technological importance. However, current methods to measure the interaction forces
between two colloids have significant limitations. Here we describe a method that exploits the fluctuation spectra
of two optically trapped microspheres in order to extract, and decouple, the conservative forces acting between
them and their hydrodynamic coupling. We demonstrate the proposed method with two silica microspheres,
and find good agreement between our results and previous predictions for the hydrodynamic and electrostatic
interactions between the spheres.
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I. INTRODUCTION

Pairwise interactions between particles determine the col-
lective behavior of multiparticle systems. In the case of sus-
pended colloidal particles, these interactions are involved in
a variety of natural phenomena, such as sedimentation [1],
aggregation [2], and the formation of colloidal crystals [3,4],
as well as in industrial processes, from food technology [5]
to pharmaceutical research [6]. Hydrodynamic interactions
between micron-sized particles moving in a fluid affect the
behavior of microfluidic devices [7–9] and biological systems
[10]. In addition, colloidal systems play an important role also
as a model for other physical phenomena such as phase tran-
sitions [11], and multibody interactions [12,13]. As a result,
characterizing the nature and magnitude of these interaction
forces is of great interest.

Different methods have been used to characterize surface
forces and hydrodynamic interactions between colloidal par-
ticles, or between a colloid and a wall. Video microscopy
[14–21] and scattering from the evanescent field of a total
internal reflection microscope [22–25] were used to moni-
tor the motion of freely diffusing colloids [14–18] or col-
loids initially positioned and then release by an optical trap
[19–21,23–25]. The shift in mean position of an optically
trapped colloid was used to directly measure the forces be-
tween the trapped particle and a second particle held by a
micropipette [26]. The resolution of these camera-based meth-
ods is limited by the pixel size, and forces can be measured
only at relatively large distances because of image analysis
limitations [27]. Other researchers used the colloidal probe
technique, based on an atomic force microscope (AFM) can-
tilever with a microsphere attached to its tip, that is brought
into the proximity of a surface [28,29], or a second micro-
sphere deposited on a surface [30–32]. A limitation of this
method arises from the high stiffness of AFM cantilevers that
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limits the measurement range to high forces. Moreover, the
cantilever is relatively large and brought to the surface at high
speed, resulting in significant hydrodynamic perturbations.
Notably, the fluctuation spectrum of a harmonically trapped
colloid was shown to be a sensitive probe of additional forces
acting on the particle, and previous works exploited the fluc-
tuation spectra of colloids held by optical traps to characterize
the hydrodynamic coupling between them [33,34], and to
measure the interaction forces between a trapped colloid and
a surface [35]. However, more work was required to find
a reliable and accurate method to simultaneously measure
the hydrodynamic and conservative interactions between two
suspended spheres. In this paper, we present and demonstrate
such a method, based on the analysis of the coupled fluctua-
tions of two microspheres trapped in optical traps.

II. RESULTS AND DISCUSSION

The motion of an optically trapped microsphere in
the small Reynolds numbers regime can be described by
a Langevin equation, γ0ẋsphere + κOTxsphere = fT (t ), where
xsphere is the instantaneous position of the particle, γ0 its
drag coefficient, and κOT the stiffness or spring constant of
the harmonic trapping potential.fT (t ) represents the random
thermal forces acting on the particle, which are assumed
to have zero mean and no memory, i.e., fT (t ) = 0 and
fT (t )fT (t ′) = 2γ0kBT δ(t − t ′). The power spectrum density
that corresponds to this equation of motion has the shape of a
Lorentzian,

P (f )
�= |x̃(f )|2 = D0

π2
(
f 2 + f 2

c

) , (1)

where D0 = kBT /γ0 is the diffusion coefficient of the sphere
and fc = κOT/2πγ0 is the “corner frequency,” which repre-
sents the crossover between a constant power at low fre-
quencies and a power that scales as f −2 for high frequen-
cies, which are insensitive to the trapping potential. This
well-characterized spectral dependence of the fluctuations is
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FIG. 1. Modeling the interaction between two suspended colloids. (a) Two ∼2-um silica microspheres are trapped with two optical traps
positioned at a constant distance. (b) The instantaneous position of the microspheres is determined by back focal plane interferometry, sampling
the voltage signals of a position sensitive detector at 81 kHz. Shown is the signal corresponding to the horizontal movement of one of the
microspheres. (c) Power spectral density (PSD) for the position fluctuations of one of the spheres, as derived from the sampled signals, for
different mean distances between the two spheres (distance between the surface of the beads: 2800, 1600, 400, and 290 nm). (d) A model
for the motion of the microspheres includes the trap’s harmonic potential and each sphere’s drag coefficient, and also an effective pairwise
interaction potential and hydrodynamic coupling between the spheres.

the basis for the calibration of optical tweezers: If the drag
coefficient is known, for example, by applying the Stokes
law γ0 = 6πηRsphere where η is the medium’s viscosity and
Rsphere the diameter of the sphere, determining fc is enough to
calculate κOT. Alternatively, applying an additional, sinusoidal
driving force of known amplitude and measuring the size of
the additional peak in the spectrum enables determining both
γ0 and κOT simultaneously [36].

We follow the fluctuations of two identical 2-μm silica
beads [Fig. 1(a)], using a dual-trap optical tweezers setup as
previously described [37,38], but using two separate lasers
to minimize interference at short distances. Briefly, the col-
limated beams (w0 = 4 mm) from two fiber-coupled lasers
(852.2 and 855.2 nm; TA PRO, Toptica) were directed to two
separate mirrors, one of which is mounted on a nanometer
scale mirror mount (Nano-MTA, Mad City Labs), and com-
bined with a polarizing beam splitter (PBS). An X2 telescope
expands the beam, and also images the plane of the mirrors
into the back focal plane of the focusing microscope objective
(Nikon, Plan Apo VC 60X, NA/1.2), ensuring that steering
will not result in shifting from the objective aperture. Two
optical traps are formed at the objective’s focal plane, each by
a different laser. The light is collected by a second, identical
objective, the two beams separated by a PBS and imaged
onto two position sensitive detectors (First Sensor, DL100-
7PCBA3). The position of the beads relative to the center of
the trap is determined by a back focal plane interferometer
[39], sampling the detectors’ signals at 81 kHz [Fig. 1(b)].

The fluctuations of the beads were recorded, first for an
isolated bead (i.e., in the absence of a second bead), and then
when both beads were trapped (see Supplemental Material

[40] for a detailed description of the experimental protocol).
The presence of a second bead [Fig. 1(c)] significantly affects
the spectrum in a distance-dependent manner, indicating the
existence of interactions between the beads. Moreover, the
perturbation of the spectra indicates that the microspheres’
motion is not fully described by the Langevin equation pre-
sented above, and therefore the use of the spectra to calibrate
the optical traps is not straightforward. However, it also
suggests that the spectra contain information about the nature
of these interactions, which might be accessed by properly
analyzing both microspheres’ fluctuations.

In order to extract information on the interactions between
the spheres, we formulate a simple model for their mo-
tion, considering two optically trapped spheres that interact,
both hydrodynamically and by conservative forces between
them [Fig. 1(d)]. The hydrodynamic interaction between the
spheres is modeled by a damper connecting them. Static,
conservative forces between the spheres are modeled as a
spring connecting both spheres, whose stiffness is equal to the
second derivative of the interaction potential. (For simplicity,
we limit our discussion to the movement of the spheres in
the lateral direction perpendicular to the line connecting the
centers of the spheres). The equation of motion of the spheres
is now a coupled Langevin equation,

(
γ11 γ12

γ21 γ22

)(
ẋ1

ẋ2

)
+

(
κeff,11 −κeff,12

−κeff,21 κeff,22

)(
x1

x2

)

=
(

fT,1(t )
fT,2(t )

)
, (2)
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which can also be written as �Ẋ + KX = FT (t ). The drag
(or Oseen) tensor �, includes in its diagonal terms γii the
friction associated with the motion of the individual particle,
i.e., the local drag coefficient of an individual sphere, and
in the off-diagonal terms, γij,i �=j , the friction associated with
the relative motion of the two spheres, i.e., the hydrodynamic
coupling between the spheres that arises from the fluid flow
generated by their movement. From symmetry considerations
γ12 = γ21, and in the case of two identical spheres, γ11 =
γ22 (see Supplemental Material [40] for a discussion of the
case of spheres of different sizes). Off-diagonal terms in the
stiffness tensor, K , describe any existing conservative force
between the spheres [F = φ′(x), where φ(x) is the interaction
potential], and diagonal terms include also the stiffness of the
optical trap:

K =
(

κOT + φ′′(x) φ′′(x)
φ′′(x) κOT + φ′′(x)

)
. (3)

On the right-hand side of Eq. (2) is the random Brow-
nian force acting on each of the spheres, which, as be-
fore, is described by its two moments: 〈fT,i (t )〉 = 0 and
〈fT,i (t )fT,j (t ′)〉 = 2γij kBT δ(t − t ′) for i, j ∈ {1, 2}. Simi-
larly to Refs. [34,41,42], we decouple the coupled Langevin
equation by defining center-of-mass coordinates: Xs =
(x1 + x2)/

√
2 and Xas = (x1 − x2)/

√
2. These new coordi-

nates result in two independent Langevin equations,

γsẊs + κsXs = fT,s (t ), (4)

and

γasẊas + κasXas = fT,as (t ), (5)

where we have defined γs = γ11 + γ12, γas = γ11 − γ12, κs =
κeff,11 − κeff,12, and κas = κeff,11 + κeff,12. In terms of this new
coordinate system, the Langevin equations describe the sym-
metric motion of the center of mass, Xs , where both spheres
move in phase maintaining a constant separation, and the
antisymmetric, relative motion of the two spheres, Xas , where
the spheres move out of phase stretching or compressing
the spring tethering them [Fig. 1(d)]. γs , γas are the drag
coefficient, and κs , κas the effective trap stiffness, for the
symmetric and antisymmetric movements, respectively. The
corresponding power spectrum densities are given by

Ps (f ) = 4
∫ ∞

0
X2

s (t ) cos (2πf t )dt = kBT

π2γs

(
f 2 + f 2

c,s

) ,

(6)

and

Pas (f ) = 4
∫ ∞

0
X2

as (t ) cos (2πf t )dt = kBT

π2γas

(
f 2 + f 2

c,as

) ,

(7)

where we have used the definition fc,k = κk/2πγk for k ∈
{s, as}. Similarly to the case of a single sphere in a single

optical trap, the resulting power spectra for the symmetric
and antisymmetric motion of the interacting spheres are both
Lorentzians. By fitting the experimentally measured power
spectra to the expressions above, one can deduce γs , γas , κs ,
and κas . Then, the drag coefficients and effective stiffness in
the original coordinates can be found by transforming the co-
ordinates back, i.e., γ11 = (γs + γas )/2, γ12 = (γs − γas )/2,
κeff,11 = (κs + κas )/2 and κeff,12 = (κas − κs )/2.

The process described above can be repeated for different
(mean) distances between the spheres, providing the func-
tional dependence of the hydrodynamic coupling, γ12(x), on
the distance between the beads. Moreover, from the distance-
dependent κeff (x), it is possible to find φ′′(x) by subtracting
the value of the trap stiffness in the absence of an interaction,
i.e., when the particles are far away, or when only one particle
is present at a time, φ′′(x) = κeff (x) − κOT. Finally, similarly
to Ref. [35], integration of φ′′(x) yields the static force:

F (x) = −φ′(x) = −
∫ x

0
φ′′(x̃)dx̃. (8)

The method described above was used to characterize
the interactions between the two silica beads. We calculated
the symmetric and antisymmetric power spectra [Figs. 2(a)
and 2(b)] and, by fitting them to Lorenzian functions, the
drag coefficients [Fig. 2(c)] and effective spring constants
[Figs. 2(d)] associated with the symmetric and antisymmetric
dynamics. As expected, the asymmetric drag coefficient grows
as the distance between the spheres diminishes, reflecting
the increasing difficulty of squeezing the fluid amidst the
gap between the two spheres as they become closer. More
surprisingly, the symmetric drag coefficient shows a slight
decrease at small separations. This may arise from the fact
that, at separations smaller than the radius of the spheres,
their in-phase motion appears like the effective movement of a
single elongated object, whose drag coefficient is smaller than
that of two separated spheres. The stiffness for the symmetric
movement [Fig. 2(c)] remains constant and equal to the trap’s
stiffness, matching the value from the theoretical deriva-
tion above, since the effective spring coupling the spheres
[Fig. 1(d)] is unperturbed when both spheres move in phase.
In contrast, the asymmetric stiffness is equal to the optical
trap stiffness at large separations but grows as the spheres
approach each other, indicating the existence of a repulsive
force (i.e., an effective spring) between them. This is also
evident when the coupling spring effective stiffness, κeff, 12, is
calculated from the difference between κs and κas [Fig. 2(e)]:
at large separations, the effective stiffness of each sphere is
equal to the stiffness of the optical trap, since the optical
force is the only force acting on each sphere. As the distance
between the spheres reduces to a distance of 100 nm and less,
the repulsive force between them results in an increase in the
effective stiffness.

As a validation for our method, we measured the axial
and perpendicular drag coefficient for spheres submerged in
water, as a function of their separation (Fig. 3). A num-
ber of theoretical predictions for the hydrodynamic inter-
actions between spheres exists in the literature. Solutions
for widely separated spheres include those using reflections
[43], bispherical coordinates [44], tangent-sphere coordinates
[45], collocation methods [46], and the method of reflections
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FIG. 2. (a) Calculated power spectrum density for the fluctuations in the asymmetric (left) and symmetric (right) motion of the spheres for
the different mean distances between the spheres as indicated in Fig. 1. (b) Drag coefficients for the symmetric (bottom) and asymmetric (top)
modes of motion. (c) Spring stiffness for the symmetric (bottom) and asymmetric (top) modes of motion. (d) Effective spring stiffness as a
function of the separation between the spheres.

combined with asymptotic methods [47]. For spheres in close
proximity, there is only one theoretical derivation, by Jefferey
and Onishi [47], using a method of reflections with asymptotic
methods (see Supplemental Material [40] for a discussion of
these methods and their theoretical predictions). Without any
fitting parameters, we observed excellent agreement with the
theoretical hydrodynamic result at all separation distances.

To further test the performance of the method, we mea-
sured the force between the negatively charged silica mi-
crospheres in NaCl solutions of different concentrations
[Fig. 4(a)]. Such force profiles can be described by the
Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, which
combines the effects of the van der Waals (VDW) attraction
and the electrostatic repulsion due to the “double layer” of

counterions. For two spheres,

F (r )

Rc

= 4πεWε0ψ
2
s e

− r
LD − H

12

1

r2
, (9)

where F (r ) is the force between two spheres, of radius Ra

and Rb, at a distance r between their centers; ε0 is the
vacuum permittivity; εW the dielectric constant of water; ψs

the surface potential; LD the Debye length; H the Hamaker
constant; and we have defined an “effective” radius” Rc =
RaRb/(Ra + Rb ). Since VDW forces contribute only at rel-
atively high salt concentrations (>1 M NaCl) and at small
surface separations (<10 nm) [48], they can be neglected in
our case. As expected, Fig. 4(a) shows an exponential depen-
dence on the sphere-to-sphere distance for all measured salt

FIG. 3. Measurements of the hydrodynamic interactions between the spheres, depicted as corrections for the drag coefficient as a function
of the spheres’ separation. (a) Parallel (lateral) drag coefficient for the self (top) and mutual (bottom) drag coefficient. (b) Perpendicular
(axial) drag coefficient for the self (top) and mutual drag coefficient. Solid lines show the predictions of a theoretical model for long-range
interactions (Eqs. (14)–(17) in the Supplemental Material [40]), while dashed lines show those of a theoretical model for short-range interaction
(Eqs. (18)–(21) in the Supplemental Material [40]).
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FIG. 4. (a) Conservative force between the spheres, as a function of the distance between their surfaces, for [NaCl] = 10 μM (squares),
100 μM (diamonds), and 1 mM (triangles). Solid lines are fits to Eq. (9), with two fitting parameters: the Debye length and the Gouy-Chapman
surface potential. (b) The Debye length as a function of the ionic strength, as determined from the fit to the measured force profile. The solid line
depicts the calculated Debye length [Eq. (10)]. (c) The electrostatic surface potential as function of the ionic strength. The solid line is based
on the Gouy-Chapman model [Eq. (11)] with a single fitting parameter, the surface charge density, which was found to be σ = 8.8 × 10−14 C.

concentrations. Fitting the force profiles with the exponential
part of Eq. (9) yields the Debye length, LD , and the surface
potential, ψs . At intermediate salt concentrations (expressed
in molar units), LD (in nm) is well described by the expression

LD = 0.304/[NaCl]−1/2, (10)

as expected for a monovalent electrolyte solution at room
temperature [49] [(Fig. 4(b)]. However, at high salt concen-
tration, we observe a large deviation from this dependence, in
agreement with previous reports [50–52]. Another deviation
was observed for pure water, whose measured Debye length is
substantially smaller than expected, possibly due to impurities
[21,35]. Figure 4(c) shows the dependence of the surface
potentials on [NaCl], where a negative sign is assigned to
match the negative net charge of silica at pH > 2.5 [53]. The
ionic strength dependence is described well with the Gouy-
Chapman equation, which relates the surface charge density
σ and the diffuse layer potential ψs for an isolated charged
interface:

ψs = 2kBT

e
arcsinh

(
eσLD

2kBT εWε0

)
. (11)

When this equation was fitted to the data, with σ as the
fitting parameter, we found σ = 8.8 × 10−14 C, which is

reasonable for SiO2 at neutral pH conditions, as found by
other techniques [23,31,54]. Of note, as expected given the
coefficients of the Jones-Dole equation for NaCl and the range
of concentrations used in our experiments [55], the presence
of the salt did not affect the estimated bulk drag coefficient
(see Supplemental Fig. 1 [40]).

In summary, we presented and experimentally demon-
strated a method that enables extracting, and decoupling, the
conservative forces and hydrodynamic interactions between
two optically trapped colloidal spheres. We validated our pro-
posed method, by measuring the hydrodynamic interactions
between two microspheres, as a function of their distance, and
the double layer electrical forces between them as a function
of the salt concentration. Excellent agreement with the rele-
vant theories was found in both cases. Beyond its potential as
a useful tool in colloid science and applications, our method
paves the way for the characterization of close-range biophys-
ical processes, such as membrane-membrane interactions.
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