
The reproductive–endocrine axis is dynamic and 
responds to multiple environmental signals that provide 
the plasticity for optimization of reproductive success 
over an individual’s lifespan1,2. The mechanisms govern-
ing and regulating this adaptability are not fully under-
stood; however, changes in the regulatory epigenetic 
landscape (Box 1) undoubtedly have a central role. The 
epigenome is responsive to external signals and is able to 
modify gene expression patterns and networks3, thereby 
enabling changes in reproductive function in response to 
differing environments (Box 2). However, the effects of 
early-​life circumstances on adult reproductive function 
vary, depending both on the timing of events relative 
to ‘windows of susceptibility’, and between individuals 
growing up in industrialized settings and those in the 
developing world who have very different lifestyles4–9. 
This plasticity and the precise nature of the altered 
reproductive traits probably depend on resource availa-
bility and clearly involve interactions between multiple 
physiological systems10–13.

The role of the epigenome in the central control 
of reproduction has been the focus of several studies 

utilizing animal and cell models over the past decade or 
so14–28, the findings of which comprise the basis of our 
current understanding on how adaptive reproductive 
strategies can be implemented. However, a reciprocal 
interaction also exists whereby reproductive hormones 
affect the epigenome and epigenetic ageing29–34, which 
complicates distinguishing cause from effect. This 
ambiguity is especially important when trying to under-
stand regulatory processes from human data, in which 
experimental work and tissue accessibility are limited. 
Consequently, the importance of correlations identified 
in many of the ‘big data’ sets from large human popula-
tion cohort studies is often unclear and the mechanistic 
basis of particular phenotypes remains ambiguous. More 
integrated approaches are warranted, including animal 
models to verify that the epigenetic modifications occur 
in the functional tissues. Subsequently, manipulations 
and in vitro experiments are necessary to define the 
actual role of the modifications on gene expression and 
whether they are responsible for the phenotype.

While adaptations to the environment can be 
seen as beneficial for the individual, they carry health 
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consequences that are often far-​reaching. The timing of 
puberty, circulating hormone levels and reproductive 
lifespan all affect cancer predisposition. Moreover, age 
at menopause is not only consequential for women who 
postpone pregnancy until later life, but is also associated 
with the onset of osteoporosis and age-​related mortality1. 
Furthermore, in the clinic, diagnostic standards are typi-
cally derived from data from women in industrial north-
ern and/or western countries, where levels of circulating 
reproductive hormones are characteristically higher than 
in women living in other settings2. Increasing numbers of 
women are migrating around the globe and seeking med-
ical care from doctors who are often only familiar with 
normative standards from the local population. It is there-
fore imperative to characterize these adaptive responses 
and elucidate the mechanisms responsible so that the cli-
nicians can make more informed decisions. Clarification 
of some of these mechanisms might also open the way 
for developing novel clinical approaches to adjust the  
reproductive phenotype by targeting the epigenome.

In this Review, we address the enigma of how adult 
reproductive function can be shaped by childhood 
events. We also examine the evidence for the epigenetic 
regulation of key regulatory genes that govern the cen-
tral control of reproduction and thereby emerge as piv-
otal elements in the adaptive response. We discuss this 
conceptual approach in understanding how variation 
in mammalian reproduction is regulated epigenetically 
and emphasize the need for multifaceted approaches to  
elucidate this intriguing aspect of human biology.

Plasticity of human reproduction
Reproductive phenotypes adapt to the environment. 
The human reproductive phenotype seems to be well 
programmed, with sexual maturation and menopause 
typically occurring within predictable age ranges in a 
given population35,36. The constraints on the timing of 
these events remain largely a mystery; however, the cen-
tral control of reproduction involves a complex inter-
play between numerous physiological systems that, 
when challenged, reveals considerable plasticity and  
adaptation to environmental conditions.

Changes in reproductive function comprise both rapid 
responses to immediate challenges (such as physiological, 

metabolic or psychological stress) and long-​term adapta-
tion to the environment in order to optimize individual 
survival and reproduction under diverse conditions1,37. 
This plasticity ensures that, during times of abundance, 
investment can be made in multiple physiological sys-
tems including growth, maintenance and reproduction. 
However, in the face of harsh conditions and depriva-
tion (for example, infection or nutritional deficit), fewer 
resources can be allocated to reproduction, which might 
even be shut down38,39. Life history theory describes and 
rationalizes such trade-​offs in varying environmental 
conditions, where the costs of immediate and even future 
reproductive activity are assessed against the need to 
invest in individual maintenance and survival40–42 (Fig. 1).

In accordance with the prevailing environmental 
conditions, age at normal pubertal onset varies across 
populations, and between 1890–1990 advanced by as 
much as 3 years in industrialized countries43. Many of 
these changes are associated with nutritional status, 
improved health and increased growth rates, although 
some studies have highlighted differences between 
distinct ethnic groups44–53. However, the role of the 
environment, as distinct from genetics, was shown in 
a series of studies in men and women from Bangladesh, 
some of whom migrated to the UK. In these studies, age 
at puberty was later in children who had grown up in 
Bangladesh than in those who had migrated to the UK 
as young children or were second-​generation migrants; 
the latter two groups entered puberty at a similar age 
to their European-​ethnic neighbours7,54,55. Other stud-
ies have also reported shifts in age of pubertal onset in 
migrant populations, some of which have been attrib-
uted to ‘catch-​up growth’, although the advancement of 
puberty following migration is apparent also in children 
who do not come from deprived backgrounds6,45,56.

Adult reproductive function also varies between 
individuals who grow up in different environments 
(Table 1). Lower average reproductive hormone levels are 
consistently reported in populations who live in more 
energetically challenging environments57–64. In people  
with Bangladeshi heritage who were born in the UK or 
migrated there as young children, progesterone levels 
in women and testosterone levels in men are mark-
edly higher than those of individuals who grew up in 
Bangladesh, and are similar to those of UK-​born ethnic 
Europeans6,7. Despite progesterone levels that would be 
considered insufficient in western clinics, individuals 
in non-​industrialized societies are fertile, suggesting 
distinct programming to allow reproductive function 
within these lower hormonal ranges2,60,65.

Compared with women who grow up in devel-
oped countries, women who grow up in less developed 
countries characteristically experience menopause at a 
younger age, in addition to having a later puberty, and 
this phenotype is also dependent on the childhood 
environment5,55,66,67. The longer reproductive lifespan 
and elevated hormone levels seen in children from 
Bangladesh who migrated to the UK were not observed 
in women who migrated as adults, even after spending a 
considerable number of years in the UK, indicating that 
the childhood environment is the main determinant of 
this adult phenotype5,6.

Key points

•	Human reproductive function adjusts to changing environmental conditions.

•	Key ‘windows of susceptibility’ during various stages of early development are the 
most sensitive to events or exposures that can impart long-​term reprogramming of 
adult reproductive function.

•	Epigenetic modifications have a role in regulating the central control of reproduction 
and pubertal onset and likely mediate much of the adaptive response.

•	Human cohort data are useful for identifying methylation in proxy tissues that 
correlates with phenotypic variation, but determining cause and effect is challenging 
because hormones affect the epigenome and epigenetic ageing.

•	Understanding which of the modifications are functional and responsible for the 
phenotype requires integrating the study of human tissues, animal and cell models 
and molecular approaches.

•	Characterization and elucidation of these adaptive mechanisms are needed to inform 
the clinician of alternative reproductive strategies, and the implications for fertility 
treatment and healthy ageing.
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Varying responses to early-​life adversity. Although 
changes to the early-​life environment can induce adap-
tive responses in pubertal timing and adult reproductive 
function, the actual consequences of exposure to adverse 
events can be puzzlingly diverse4,8,13. It should be noted, 
however, that most scientific studies are carried out in 
western, educated, industrialized, rich and democratic 
populations, in which lifestyles and nutrition are far 
removed from those of our ancestral environments as 
hunter-​gatherers and from foraging societies still in  
existence4,68. In fact, differing responses are seen in popu
lations with distinct cultures. For example, in developed 
countries, girls who experience paternal absence during 
childhood are widely reported to have an earlier puberty 
relative to their peers, while in less developed countries 
girls exposed to similar events show either no change or 
even a delay in pubertal onset4,69,70. These findings sug-
gest that the distinct outcomes are due to differences in 
the physiological or metabolic states in these girls, which 
are determined by their environment.

Physiological responses to adversity imposed by harsh 
conditions are usually energetically costly, as exemplified 
during inflammation or infection by the proliferation 
of immune cells. In states of limited resources, trade- 
offs are required between these physiological systems  
as described in life history theory12,71,72. In fact, chronic 

inflammation during childhood is often associated with 
pubertal delay73,74, while an increased level of body fat in 
Amazonian forager children was seen to endow them with 
protection from the growth-​inhibiting effects of acute  
inflammation72. Thus, the specific outcome of early- 
​life adversity on reproductive function almost certainly 
varies according to the availability and allocation of 
resources (Fig. 1).

The hypothalamic–pituitary–adrenal (HPA) axis has 
a key role in allocation of metabolic resources through 
the centralized ‘stress response’, which affects reproduc-
tion as well as growth and homeostasis. Increased stress 
and elevated cortisol levels are usually associated with 
reduced reproductive function and delayed puberty75–77; 
however, the stress response also seems to mediate the 
effects of poor nutrition on the timing of pubertal onset, 
as seen in stressed rats fed a western diet (high levels 
of refined sugars and saturated fats, and low fibre con-
tent) in which normal pubertal timing was restored fol-
lowing environmental enrichment11. Moreover, the set 
point of the HPA axis can be changed following early-​life 
trauma, resulting in chronically altered circulating corti-
sol levels, while stress responses are attenuated in some 
metabolic states, such as conditions of low visceral adi-
pose tissue78–81. It is clear, therefore, that understanding 
the mechanisms behind adaptive reproductive strate-
gies needs to take into account the complexities of the 
wide-​ranging physiological context.

Population studies, big data and finding the role of epi-
genetic programming. One of the ways to overcome the 
difficulties faced in analysing data with large variation is 
by looking at extensive cohort studies of human popu-
lations. This approach has revealed altered reproductive 
phenotypes that correlate with stressful conditions among 
diverse populations82–87. Many of these databanks main-
tain records of circulating hormone levels, which can 
inform about reproductive competence and the state of 
the ovarian reserve, and some also have blood or buccal 
DNA methylation data that might relate to the phenotypic 
variation. Such connections, however, are problematic 
given that methylation patterns differ across tissues88,89, 
providing an ambiguous link between any changes 
observed. The proxy tissues assessed in these databanks 
do not express most of the key factors that regulate repro-
ductive function, or the epigenetic modifications pres-
ent in the functional tissues. Therefore, understanding 
the underlying mechanisms behind these observations 
remains challenging, both owing to inaccessibility of rel-
evant tissues and also because cause and effect are very 
difficult to discern from longitudinal datasets.

Epigenetic modifications have been proposed to 
underlie altered adult phenotypes in response to early- 
life events, as described in the context of Developmental 
Origins of Health and Disease (DOHaD)90,91 (Box 2). 
However, evidence for such modifications in the con-
text of the central control of reproduction remains 
mostly indirect, which is in contrast with the metabolic  
and stress axes for which human and animal studies 
have demonstrated a role for epigenetic modifications 
in adaptive responses to external signals10,92,93. Gluco
corticoids have a central role in the modified stress 

Box 1 | determinants of the regulatory epigenetic landscape

The nucleotide sequence of dnA
These sequences affect the mechanical properties of DNA, thus influencing nucleosome 
positioning, mobility and stability. The CpG content at stretches of regulatory DNA 
determines its potential regulation by DNA methylation and hydroxymethylation. 	
DNA methylation recruits repressive protein complexes and so is usually inhibitory 
when occurring at gene promoters and enhancers, but likely has different roles in 	
gene bodies. Hydroxylation of methylated cytosines can lead to active or passive 
demethylation and so facilitates transcription177,219.

nucleosome packaging of the dnA inhibits accessibility to regulatory proteins
For transcription to occur, nucleosomes must usually be destabilized (for example, through 
incorporation of histone variants and covalent modification). This destabilization also 
facilitates nucleosome movement or eviction by ATP-dependent chromatin remodelers180,220.

Histone variants alter various characteristics of the nucleosome
H2A.Z and H3.3 are histone variants commonly found at transcriptional start sites of 
actively transcribed genes. H2A.Z incorporation increases nucleosome mobility and 
decreases stability. The role of H3.3 in transcription is less clear, but it was proposed 	
to enhance accessibility of the chromatin to transcription factors15,25,221,222.

Multiple histone modifications have diverse roles
Covalent histone modifications can signal recruitment of regulatory proteins while 
some modifications alter the histone charge, possibly affecting interaction with the 
DNA or other histones. Histone acetylation is found in broad regions of active 
promoters and enhancers, and is regulated by a number of histone acetyltransferases 
and deacetylases. Other histone modifications, like methylation, are more localized, 
catalysed by fewer enzymes and impart distinct effects depending on the number 	
of modifications and the specific histone residue targeted223.

Functional enhancer rnAs
Transcriptional enhancers are often transcribed into non-​coding RNA (eRNA), whose 
functions are beginning to emerge but could vary in different contexts. Some eRNAs 
have been shown to regulate the proximal promoter chromatin landscape profoundly 
and have a role in enhancer–promoter DNA looping26,181.

Higher-​order chromatin
Chromatin 3D organization creates domains that both limit and mediate regulatory 
interactions. These domains change through development and determine long-​range 
transcriptional regulation224.
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response as demonstrated by the epigenetic reprogram-
ming of genes in the HPA axis, including the gluco
corticoid receptor93,94. Furthermore, glucocorticoid 
catabolism is decreased through reduction in the steroi-
dogenic enzyme 5α reductase 1 in the liver, which was 
proposed to increase levels of active cortisol in order to 
enhance fuel output79.

Preliminary work from our group shows that a 
cis-​regulatory region of SRD5A1, the gene that encodes 
5α reductase 1, is more methylated in buccal DNA of 
Bangladeshi women who had grown up in Bangladesh 
rather than in the UK. This gene was also more methyl-
ated and its expression downregulated in a mouse model 
of early-​life adversity that we used to study the epigenetic 
basis for the women’s adaptive reproductive phenotype 
(B.B.-​S. and colleagues, unpublished work). In the hypo-
thalamus, this enzyme moderates activity of the HPA axis  
as well the hypothalamic–pituitary–gonadal (HPG)  
axis through the production of neurosteroids95–97, and so 
seems to function as an epigenetically regulated sensor 
that can determine the appropriate resource allocation to 
each of these axes in challenging environments.

Windows of susceptibility
DOHaD and adaptive programming during fetal devel-
opment. The concept of DOHaD is firmly rooted in 
the gestational period, having arisen from Barker’s 

observations of differences in birthweight across England 
and the associated later health outcomes98. Accordingly, 
most studies on the effects of early-​life events on later 
health and disease have focused on very early stages of 
development, during which the patterns of gene expres-
sion that direct differentiation and organogenesis first 
become established. Barker and others have described 
fetal metabolic programming, as determined by the 
nutritional state during gestation, as shaping the trajec-
tory of resource allocation and thus also health through-
out later life92,99–101. At least some of these effects were 
seen to occur independently of the uterine environment, 
strongly supporting an epigenetic component100–102.

Maternal nutrition has been shown repeatedly 
to affect DNA methylation patterns in the offspring 
of various mammals103. Notably, the level of methyl 
donors in the maternal diet at conception was seen to 
alter methylation levels at several metastable epialleles 
in the children of women from rural Gambia104. In mice, 
maternal nutrition was noted to influence methylation 
in the offspring at several imprinted genes, as well as Lep 
and Ppara and a number of genes encoding chromatin 
modifiers9,105–108. Changes in the epigenetic landscape, 
most notable at genes like these that encode factors reg-
ulating growth and metabolism, have been proposed 
to affect the offspring’s metabolic phenotype as part 
of an adaptive response to the early-​life adversity109.  

Box 2 | glossary of terms

5mC and 5hmC: 5-​methylcytosine or 5-​hydroxymethylcytosine 
modifications of the DNA.

Adrenarche: postnatal maturation of the adrenal gland, which occurs 
almost uniquely in humans at age 5–8 years and results in activation of 
17,20-lyase activity and decreased 3β-hydroxysteroid dehydrogenase 
activity in the zona reticularis, greatly increasing circulating levels of 
DHEA and DHEAS.

Catch-up growth: a period of rapid growth that often occurs in children 
after their removal from growth-​inhibiting conditions, allowing 
attainment of the expected final height.

Chromatin: packaging of the DNA around the histone proteins, the nature 
of which determines DNA accessibility.

CpG: a cytosine nucleotide followed by a guanine nucleotide, in the 5′ to 
3′ direction.
CPP: central precocious puberty, when secondary sexual features appear 
before 8 years of age owing to early activation of the HPG axis and 
elevated circulating gonadotropin levels.

DHEA and DHEAS: dehydroepiandrosterone and dehydroepiandroster-
one sulfate, ‘weak’ androgens (i.e. they bind the androgen receptor with 
low affinity) produced in humans largely by the adrenal glands following 
adrenarche.

DOHaD: developmental origins of health and disease.

FSH: follicle-stimulating hormone, the pituitary hormone that stimulates 
follicle growth in females and conversion of weak androgens to strong 
androgens or oestrogens in both sexes. It is composed of a common 
α-​subunit (encoded by CGA) and a hormone-​specific β-​subunit (encoded 
by FSHB).

GnRH: gonadotropin-releasing hormone, the hypothalamic hormone that 
stimulates the pituitary to produce and release the gonadotropins LH and 
FSH.

Gonadotrope: the pituitary cell that synthesizes and secretes the 
gonadotropins LH and FSH.

Gonadotropins: the pituitary hormones LH and FSH.

HATs and HDACs: families of enzymes acting as histone acetyl transferases 
(HATs) or histone deacetylases (HDACs).

HPA axis: hypothalamic–pituitary–adrenal endocrine axis that regulates 
adrenal function, homeostasis and the stress response.

HPG axis: hypothalamic–pituitary–gonadal endocrine axis that regulates 
reproductive function.

KMT and KDM: families of enzymes acting as lysine methyltransferases 
(KMTs) or lysine demethylases (KDMs).

LH: luteinizing hormone, the pituitary hormone that stimulates ovulation 
and corpus luteum formation and progesterone synthesis in females, and 
androgen synthesis in both sexes. It is composed of a common α-​subunit 
(encoded by CGA) and a hormone-​specific β-​subunit (encoded by LHB).

Menarche: the first cycle of menstrual bleeding in girls

NAD +/NADH: Nicotinamide adenine dinucleotide (NAD) and its reduced 
form (NADH) are involved in electron transfer in cell metabolism. They 	
also act as cofactors for many enzymes, including the sirtuin histone 
deacetylases.

PRC: polycomb repressive complex, which shuts down gene expression 
primarily through catalysing repressive histone methylation.

Puberty: the process of sexual maturation during which the HPG axis is 
activated, the gonads start to produce sex-​specific steroids in large 
amounts and the potential for sexual reproduction is attained.

RNAPII: RNA polymerase II, which transcribes most protein-​coding genes.

TET enzymes: Ten-eleven translocation enzymes that catalyse the 
conversion of 5mC to 5hmC, as well as other less common modifications 
(5-​formylcytosine and 5-​carboxylcytosine), which can lead to demethylation.

αKG: α-ketoglutarate (2-​oxoglutarate) is produced during glucose 
metabolism following the deamination of glutamate and is a crucial 
cofactor for several chromatin-​modiying enzymes, including the TET 
enzymes and most of the histone demethylases.
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This adaptive response results in altered birthweight 
and childhood growth rates, nutritional state and meta-
bolic rates, all of which have key roles in pubertal timing 
as seen in the early pubertal onset of low-​birthweight  
children that undergo ‘catch-​up’ growth110–112.

Poor maternal nutrition and low birthweight of 
female offspring are also associated with a decrease in 
the size of ovarian reserve, which is evident in earlier 
reproductive senescence in women and rats113–118. The 
pool of germ cells is established during gestation, and in 
the female reaches a finite number such that events dur-
ing this time can have a marked effect on female repro-
ductive function later in life. The effect of the uterine 
environment on the offspring’s ovarian development 
is seen in neonatal rats born to nutritionally deprived 
mothers, which contain more activated primordial folli-
cles and altered levels of phosphoinositide 3-​kinase–Akt 
signalling (which regulates follicle recruitment)119.

Further to these data, after pubertal onset, reduced 
rates of ovulation and disrupted oestrous cyclicity are 
reported in many women who had low birthweights 
and those born to nutritionally deprived mothers, and 
this phenotype is also observed in mice119–121. The fact 
that infants born small for gestational age have elevated 
circulating FSH levels indicates that the central control 
of reproduction is also modified in these individuals122. 
Indeed, the neuroendocrine regulation of reproduction 
is being established and primed during fetal develop-
ment, including the sexual dimorphic masculinization 
of the male brain by fetal-​origin androgens, further 
contributing to the sensitivity of the fetal period to  
epigenetic perturbations123.

The neonatal period and ‘mini-​puberty’. The hypothala-
mus and pituitary undergo considerable postnatal matu-
ration to establish the central mechanisms that regulate 
reproduction in the adult124–126. Changes in epigenetic 
modifications during the key developmental stages thus 
continue to have a role in adaptive reprogramming in 
response to the neonatal and childhood environment, 
possibly via distinct mechanisms depending on the age 
of exposure and fluctuations in growth and metabolism 
that characterize these stages (Fig. 2).

During the ‘mini-​puberty’, which occurs in the 
first few months of life, activity of the hypothalamic– 
pituitary axis is stimulated owing to the immediate post-
natal drop in steroid negative feedback125,127. In boys and 
male rodents, this activity includes a very rapid and tran-
sient testosterone surge on the day of birth123,128–130. The 
hormonal changes during this time modify hypotha-
lamic neuron growth and development, gene expression 
patterns and the epigenome, and the androgen exposure 
leads to unique characteristics associated with brain 
masculinization (starting during the latter part of fetal 
development). Therefore, this neonatal period comprises 
a clearly defined window that is, at least in part, sexually 
dimorphic123,130.

The process of hypothalamic maturation during this 
time is acutely sensitive to the nutritional state, particu-
larly the kisspeptin neurons in the arcuate nucleus that 
regulate gonadotropin-​releasing hormone (GnRH) syn-
thesis and secretion. The development of these cells is 
adversely affected by poor nutrition, which is reflected 
in reduced neuron density, reduced Kiss1 and Gnrh 
expression and changes in the age of pubertal onset and 
fertility131–133. Moreover, the testosterone surge in these 
first few postnatal months was reported to correlate with 
growth and metabolism in early childhood134,135, which 
likely affects pubertal timing.

The gonadotrope population of the pituitary also 
undergoes dynamic change in the neonatal period, 
with a transient wave of expansion of precursor cells 
that undergo proliferation and differentiation. In mice, 
this includes epigenetic reprogramming, some of which 
involves a major drop in the expression of ten–eleven 
translocation methylcytosine dioxygenase 1 (TET1) 
DNA hydroxymethylase23. Subsequently, however, the 
numbers of gonadotropes are reduced to adult levels136,137 
and the function of this temporary increase in hypotha-
lamic–pituitary activity on later reproductive function 
is not clear. It is reasonable to assume, however, that this 
developmental phase also has a role in programming the 
central control of reproduction in the adult.

Sensitive windows during childhood. Early childhood 
is dominated by changes in growth and metabolism 
rather than reproductive activity, which is largely quies-
cent until the approach of puberty. However, numerous 
studies have pointed to early or mid-​childhood as being 
a critical time for mediating the effects of adversity on 
reproductive function5–7,138–140. One reason for sensitivity 
at this time is the changing levels of hormones involved 
in somatic growth and bone maturation, which have a 
role in determining the timing of pubertal onset141. As 
noted, factors that regulate metabolic function seem 

Environment and lifestyle

• Changing 
environments

• Stressful events
• Infection

• Input (nutrition)
• Output (energy

expenditure)
• Reserves

Endocrine axes
Reprogramming and/or
programming of resource
allocation

Growth
• Growth rates
• Final height
• Metabolic rates
• Fat reserves

Homeostasis
• Metabolic rates
• Immunity
• Propensity to disease

Reproduction
• Ovarian reserve
• Pubertal onset 
• Hormone levels
• Cycle characteristics
• Age at menopause

Fig. 1 | life history theory of environmentally induced reprogramming via the 
endocrine system. In response to changing environmental conditions and in the context 
of existing resources, resource allocation can be reprogrammed through the endocrine 
system to balance or shift between growth, homeostasis and reproduction, with the brain 
having a central role owing to its ability to regulate all three endocrine axes.
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particularly sensitive to epigenetic modification, and 
changes in childhood growth rates or metabolic status 
certainly influence the timing of pubertal onset124,142. 
Levels of body fat also vary considerably during this 
time, especially in girls143, which affects the trade-​offs 
between homeostasis, growth and reproduction that 
occur in adverse conditions (Fig. 1). Differences in 
the size and quality of these metabolic reserves might 
also explain some of the diverse responses in distinct 
populations.

At around 5–8 years of age, children undergo adren
arche, signalling maturation of the HPA axis and a 
dramatic increase in circulating levels of dehydroepi-
androsterone (DHEA) and DHEA-​sulfate (DHEAS). 
These ‘weak’ androgens (that is, they bind the androgen 
receptor with low affinity) can be converted to stronger 
androgens or oestradiol in specific tissues, including the 
brain, gonads, liver and adipose tissue144, which enables 
them to bind the steroid receptors and presumably trig-
ger epigenetic modifications. DHEA and DHEAS exert 
a multitude of actions, including modifying neuro
transmitter receptors in the central nervous system,  
modifying the stress and immune responses and affect-
ing bone density and metabolism144, any of which might 
affect pubertal timing and/or the central regulation 
of reproduction. In adults, they also act on the ovary 
directly, increasing circulating anti-​Müllerian hormone 
levels as well as the ovarian response to stimulation, sug-
gesting their role in ovarian follicle recruitment145,146. The 
broad effects of these androgens, including their direct 
effects on the HPG axis, corroborate the likelihood that 

early-​to-​mid-​childhood comprises a major developmen-
tal milestone in reproductive programming. This obser-
vation is supported by studies in populations that have 
migrated from Bangladesh, in which 8 years of age was 
found to be a critical ‘cut-​off ’ age in girls and boys that 
influenced the adult reproductive phenotype5–7.

Most studies suggest that early life is the principle 
phase during which adaptive reprogramming occurs. 
Changes in the epigenome, however, continue through-
out the lifespan, both during normal developmental pro-
cesses and in response to specific environmental signals, 
and are pivotal in the onset of puberty. The epigenome 
then continues to mediate the central control of repro-
ductive function, sustaining the reproductive trajec-
tory established by the early-​life programming, while 
also endowing some responsiveness to changes in the  
immediate environment of the adult.

Central control of reproduction
Genetics reveals epigenetically regulated genes involved 
in pubertal timing. The timing of pubertal onset is 
clearly affected by the environment, but genetics also 
comprises a major determinant, with common and rare 
genetic variants having a role in the normal disparity 
seen in homogeneous populations147. Unsurprisingly, 
many of these genetic variants are in key compo-
nents of the HPG axis, such as genes encoding kiss-
peptin, GnRH, LH and FSH and their receptors148. 
Identification of genetic mutations associated with 
pubertal timing in the clinic has led to the discovery 
of novel epigenetically regulated decisive factors, such 

Table 1 | Populations in energetically demanding environments demonstrating plasticity in female reproductive characteristics

Population location Subsistence Strategy Environmental Stressors reproductive 
characteristicsa

refs

Aymara Bolivia Agro-​pastoralists Seasonal nutritional stress 
and seasonally variable hard 
physical energy expenditure

Chronically lower levels  
of progesterone

60

Gainj Papua New 
Guinea

Slash and burn 
horticulturalists

Nutritional, immunological, 
hard physical energy 
expenditure

Lower levels of reproductive 
steroid hormones, long 
menstrual cycles, lower rates  
of ovulation

213

Kaqchikel Maya Guatemala Subsistence agriculturalists Nutritional, immunological, 
hard physical energy 
expenditure, psychological 
stress

Changes in luteal progesterone 
levels in relation to stress 
measured through cortisol 
levels

214

Lese Democratic 
Republic of 
Congo

Slash and burn 
horticulturalists

Nutritional, immunological, 
hard physical energy 
expenditure

Later puberty, chronically 
and seasonally lower levels of 
reproductive steroid hormones, 
fewer days menstrual bleeding, 
lower rates of ovulation

58,215

Migrant Bangladeshis Sylhet, 
Bangladesh, 
and London, 
UK

Developing country and 
industrialized nation

Immunological challenges 
during childhood

Shorter reproductive lifespan, 
chronically lower levels of 
progesterone and lower rates  
of ovulation in women who 
grow up in Bangladesh

5,6,55

Polish Poland Rural farmers 
(non-​mechanized)

Seasonally variable hard 
physical energy expenditure

Seasonally lower levels  
of progesterone

216

Tamang Nepal Agro-​pastoralists Seasonally variable hard 
physical energy expenditure

Chronically and seasonally 
lower levels of reproductive 
steroid hormones

217

aReproductive characteristics compared with normative clinical standards.
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as Makorin ring finger 3 (MKRN3), which represses 
the onset of puberty149–152. MKRN3 is an E3 ubiquitin 
ligase and, although its function in sexual maturation 
is not yet known, it is expressed highly in the arcuate 
nucleus before puberty, drops markedly with pubertal 
onset, and remains thereafter at low levels. Moreover 
this gene is imprinted and normally expressed only 
from the paternal allele owing to methylation-​mediated 
repression of the maternal allele153. Similar studies 
revealed mutations in Delta-​like 1 homologue (DLK1) 
to be strongly associated with precocious puberty as 
well. DLK1 is also a paternal allele-​expressed imprinted 
gene whose expression levels in the hypothalamus fall 
at puberty154. The fact that both genes are programmed 
primarily via DNA methylation, and expressed from 
just one allele, renders them particularly susceptible to 
perturbation of epigenetic states with consequences on 
pubertal timing. Moreover DLK1, which is also known 
as preadipocyte factor 1, represses adipogenesis and is 

highly likely to be regulated by changes in the meta-
bolic state, providing a novel mechanistic link between 
metabolism and reproduction155.

Genome-​wide association studies have identified 
several factors associated with age at menarche, which 
might comprise novel epigenetically regulated targets to 
mediate adaptive responses, especially given that many 
of them regulate bodyweight or metabolism156–160. One 
example, CRTC1 (which encodes CRTC1 or transducer 
of regulated CAMP response element-​binding protein 1  
(TORC1)), has been linked to age at menarche160 and 
mediates the effects not only of nutritional status on 
metabolic programmes, but also controls reproduction 
directly through activating Kiss1 and the genes that 
encode both subunits of FSH161–164. It is not yet clear to 
what degree CRTC1 activity is determined by epigenetic 
regulation, although it is apparently regulated by the 
deacetylase sirtuin 1 (ref.165).

Reproductive neuroendocrinology, epigenetics and con-
nections with metabolism. The links between metabolic 
state, pubertal onset and reproductive function are well 
recognized27,28,142,159,166. Furthermore, changes in metabo-
lite levels can directly alter the epigenome owing to their 
role as cofactors for several key chromatin-​modifying 
enzymes167–169; however, not much is known about how 
these two fields meet in the context of the neuroendocrine  
control of reproduction.

Pubertal onset hinges on a number of central neuro
endocrine pathways that lead to reduced inhibition 
and increased activation of GnRH secretion, with piv-
otal stimulation by kisspeptin159,170–172. Increased Kiss1 
promoter activity is mediated by a reduction in poly-
comb repressive complex (PRC) proteins CBX7 and 
EED, as well as GATAD1, which recruits KDM1A,  
a demethylase that removes activating histone H3 K4 
trimethylation16,173. Subsequently, two activating lysine 
methyltransferase complexes, KMT2A (MLL1; which 
catalyses H3 K4 trimethylation at the KISS1 pro-
moter) and KMT2C (MLL3; which binds a distal KISS1 
enhancer), are associated with expression of the gene17 
(Fig. 3).

It is not yet known whether these neuroendocrine 
processes respond to external signals to mediate changes 
in the timing of puberty, other than for a mechanism 
that was suggested to involve sirtuin enzymes, whose 
deacetylase activity is regulated by the metabolic state18. 
Prior to pubertal onset, the nutrient-​sensitive histone 
deacetylase, sirtuin 1, represses Kiss1 expression through 
interaction with the PRC complex18. Sirtuins require 
NAD+ as an essential cofactor and, in cases of nutritional 
excess, NAD+ is utilized heavily, which might restrict sir-
tuin activity and reduce this repression167–169. Therefore, 
in conditions of prepubertal overnutrition, the weak-
ening of PRC-​mediated inhibition that occurs towards 
puberty could be further facilitated by a drop in sirtuin 1 
activity, leading to precocious puberty. Conversely, 
undernutrition might have the opposite effect, delaying 
puberty owing to enhanced sirtuin 1-​mediated repression  
of KISS1 (ref.18).

Owing to their utilization of α-​ketoglutarate (αKG) as a 
cofactor, the DNA hydroxymethylase and/or demethylase  
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Fig. 2 | Key early-life developmental stages in childhood and windows of susceptibility 
for reproductive axis reprogramming. Fluctuations in pulsatile gonadotropin-​releasing 
hormone (GnRH) (top) and steroid levels (bottom) in boys and girls from late fetal 
development through sexual maturation; dehydroepiandrosterone (DHEA) levels are 
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TET enzymes are also sensitive to the metabolic state,  
and changes in αKG availability have been seen  
to regulate levels of DNA methylation and hydroxy
methylation174,175. Increased GnRH expression during 
neuronal maturation in rhesus monkeys correlates with 
decreased DNA methylation at its promoter, suggesting 
relief of epigenetic-​mediated repression19. Furthermore, 

TET2 levels in the preoptic area increase through devel-
opment in mice and this appears to facilitate GnRH 
expression. Although Tet2 knockout did not affect 
pubertal onset, it resulted in reduced levels of circulat-
ing LH and reduced fecundity in males, suggesting a role  
in maintenance of GnRH neuronal function20. It is  
feasible that the nutritional state might therefore also 

• Environment
• Nutrition
• Stress
• Energy reserve
• Infection

ARC AVPV

Preoptic area

Pituitary gland

Inhibitory chromatin modifiers

Activating epigenetic marks

KISS1
• SIRT1
• EED
• CBX7

• GATAD1
• KDM1A
• MKRN3?

GNRH
• DNMT
• MKRN3?

GNRH
Promoter
• H3K4me3
Enhancer
• eRNA

KISS1
neuron

GNRH
neuron

KISS1 promoter and enhancer
H3
• K9ac and/or K14ac
• K27ac
• K4me2 and/or K4me3

H4
• K16ac

Oestradiol

LHB
• HDACs
• DNMT
• TET1 
 
CGA
• Promoter
   nucleosome 
 
FSHB
• HDACs
• SIN3A
• SMRT

Gonadotrope

CGA promoter
H3
• K4me3
• K9ac
• K27ac
• S10p
• S28p

CGA enhancer
H3
• K4me1
• K27ac 
• eRNA

FSHB promoter
H3
• K4me3
• K27ac

NDR-promoter

LHB promoter
H3
• K4me3
• K27ac

• 5hmC
• H2A.Z 
 

Blood vessel
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specifically responsible have yet to be identified). Similarly, in the pituitary gonadotropes, a number of inhibitory factors 
(in red) have been identified that repress expression of CGA, LHB and FSHB and, after their removal, activating marks  
(in green) are associated with gene expression. Data are taken from mouse models (referenced in the main text). ARC, 
arcuate nucleus; AVPV, anteroventral periventricular nucleus; NDR, nucleosome depleted region.

www.nature.com/nrendo

R e v i e w s



affect GnRH levels through moderating TET2 activity 
on the Gnrh promoter.

The pituitary gonadotropes respond to the meta-
bolic state through direct sensing of an altered glycae-
mic environment and resulting changes in glycolysis24. 
Ambient hyperglycaemic conditions lead to a major 
metabolic imbalance in these cells, including ele-
vated levels of αKG and a drop in the NAD+ to NADH 
ratio, which affect TET and sirtuin enzyme activity. 
Consequently, the gonadotrope epigenome under-
goes a decrease in 5-​methylcytosine and an increase in 
5-​hydroxymethylcytosine DNA methylation, with ele-
vated levels of histone acetylation24. The primary effect of 
these changes is a reduction in Fshb expression and cir-
culating levels of FSH, which would be expected to affect 
female fertility24. In accordance with these findings in 
mice, young girls with type 2 diabetes mellitus have ster-
oid profiles that reflect low FSH levels and, worryingly, 
their menstrual dysfunction is reported not to improve 
following extensive anti-​hyperglycaemic treatment176. 
This outcome is highly suggestive of an epigenetic basis 
to their poor reproductive function, with implications 
for administering the most appropriate treatments.

Importance of the chromatin landscape. The functional-
ity of an epigenetic modification can only be understood 
if studied in the relevant chromatin context. The mode 
of regulating a particular gene’s expression is determined 
by the chromatin organization at its proximal promoter 
and often numerous distal transcriptional enhancers, 
which define how the gene can be activated or repressed. 
This chromatin landscape comprises the DNA and the 
packaging histone proteins and how these are organ-
ized and modified (Box 1). The DNA sequence deter-
mines potential regulation by DNA methylation and 
hydroxymethylation and also influences nucleosome 
positioning and the way in which the DNA is packaged 
into nucleosomes177. The nucleosome packaging varies 
also owing to the inclusion of histone variants and cova-
lent histone modifications, both of which can alter the 
DNA–histone interactions as well as the stability and 
mobility of the nucleosomes25,178–180. This organization 
is instrumental in determining the mechanisms that are 
involved in regulating gene transcription and expression 
levels and how they might be perturbed, and its study is 
thus essential to appreciate the possible function of any 
differential epigenetic modifications detected in large 
population screens25,178,181,182.

The gonadotropin LH α-​subunit and β-​subunit- 
​encoding genes provide an example of how very dif-
ferent chromatin packaging explains not only their 
distinct expression levels and unique methods of regu-
lation, but also their respective propensities to epigenetic 
regulation15,25,183. Transcription of Cga, which encodes 
the common gonadotropin α-​subunit, is initiated 
quite easily owing to the activity of a cell-​specific distal 
enhancer that directs open chromatin at the proximal 
promoter, leaving it free from nucleosomes in gonado-
trope cells25,26. This chromatin organization allows unob-
structed access of the regulatory transcription factors and 
general transcription machinery to the transcriptional 
start site of the gene. The major barrier for upregulating 

transcription is therefore traversing the first (+1) nucle-
osome, which is downstream of the transcriptional start 
site, and transcription is stimulated through targeting 
this nucleosome25. The +1 nucleosome is made less sta-
ble by incorporation of the histone variant H2A.Z, and 
this reduced stability helps RNAPII passage through the  
nucleosome, which increases rates of transcription25. 
The transcriptional upregulation of Cga by GnRH 
also involves induction of several activating histone 
modifications, including H3 phosphorylation and 
acetylation, which reduce the histone tail–DNA inter-
action, probably also contributing to the transcription  
efficiency14,25,181 (Fig. 3).

The potential regulation by DNA methylation of 
these genes is also distinct. In contrast to Cga, which 
virtually lacks CpG sites on its proximal promoter, Lhb 
is tightly regulated by DNA methylation and the TET 
enzymes23. In gonadotrope precursor cells, expression of 
Lhb is repressed by TET1 through non-​catalytic mecha-
nisms. However, TET1 expression is downregulated dur-
ing development and, in fully differentiated gonadotrope 
cells, its place on the Lhb gene promoter is replaced by 
TET2, which catalyses the activating hydroxymethylation  
at this locus23 (Fig. 3).

Also in marked contrast to Cga, the Lhb promoter 
is packaged in a nucleosome, which covers the binding 
sites for the crucial Lhb activating transcription factors 
SF1, PITX1 and EGR1 (refs15,25). Expression of Lhb thus 
requires remodelling of the promoter chromatin to 
allow transcription initiation. This remodelling involves 
incorporation of H2A.Z into the promoter nucleosome, 
which increases its mobility on the DNA and facilitates 
transcription factor binding15. This nucleosome is also 
covalently modified following gonadotrope exposure 
to GnRH, which increases recruitment of menin, a key 
component of the KMT2A and/or KMT2B methyltrans-
ferase complex that is responsible for the activating H3 
K4 trimethylation modification at the gene promoter21 
(Fig. 3).

The chromatin landscape of Fshb has yet to be deter-
mined in such detail, but earlier studies reported that 
this gene is repressed in partially differentiated gonado-
trope cell lines by class I and class II histone deacetylases 
(HDACs) whose actions are overcome by GnRH22,184–186. 
This repressive role for HDACs has been confirmed 
more reccently in primary gonadotrope cells from 
sexually immature mice, in which GnRH was seen to 
increase levels of histone acetylation at the Fshb gene 
promoter (L.P. and P.M., unpublished work). The repres-
sive actions of HDACs on this gene and the ability of 
GnRH to overcome their activity probably comprise a 
key repressive mechanism that is lifted at the time of 
puberty when GnRH levels increase (Fig. 3). Further 
studies are required to understand the role of these and 
other epigenetic-​driven mechanisms that mediate adap-
tive changes in reproductive function in response to the 
environment.

Identifying the epigenetic drivers
Reproduction, epigenetics and ageing: cause and effect. 
One of the shortcomings of trying to understand pheno-
typic variation by looking at human cohort methylome 
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data is being able to decipher cause from effect187. 
Methylome analyses have been performed in girls and 
boys across puberty using peripheral leukocytes or blood 
mononuclear cells, and in one study a causal relationship 
between the changes in DNA methylation and secondary 
sexual characteristics was inferred188. However, gonadal 
steroids are known to modify the epigenome29–31, and 
two such studies reported particular enrichment for dif-
ferential methylation at regions close to oestrogen recep-
tor binding sites or E2-​responsive genes, which suggests 
that the altered methylation might be mediated by the 
increase in steroids189,190. As noted by these authors, it 
is not possible to determine from these observations 
whether the epigenetic changes are the result or the 
cause of the hormonal changes. Bessa and colleagues190 
also examined changes in CpG methylation in individ-
uals with central precocious puberty and identified 48 
hypermethylated ZNF protein-​encoding genes, which 
they acknowledged might contribute to central pre-
cocious puberty but equally might result from func-
tional changes in the genetic network underlying this 
condition.

Global levels of DNA methylation normally change  
over the lifespan, known as epigenetic drift or ageing191,192,  
and this too is affected by activity of the reproductive 
axis. Some CpG sites show more variation over time 
than others, and when taken together they reflect quite 
precisely the ageing process. This observation has 
led to the development of predictive tools of chrono-
logical age, termed epigenetic clocks193,194. The tick- 
rates of such epigenetic clocks are affected by various  
factors including environmental influences, and they 
correlate remarkably well with general health193,195–198. 
Importantly, the pace of epigenetic ageing is altered fol-
lowing puberty and menopause, and in certain tissues  
specifically in response to oestradiol32–34,199,200. Thus, 
early-​life environmental exposures or events that alter 
reproductive trajectories, including age at puberty or 

circulating hormone levels, would likely affect epige-
netic ageing. So here too, differences observed in the 
methylome might reflect the altered reproductive func-
tion but are not necessarily responsible for the indi-
vidual’s phenotype. Deciphering how these changes in 
DNA methylation profiles relate to environmentally 
modified reproductive strategies and the molecular 
mechanisms involved requires additional experimental 
approaches, first to address whether the modification is 
in fact altered in the functional tissue and cell type that 
determines the reproductive phenotype, and second to 
demonstrate its role (Fig. 4).

Animal models, tissue accessibility and functional 
adaptive strategies. DNA methylation patterns vary 
between tissues, and in easily attainable proxy tissues 
are not necessarily the same as in the relevant functional 
tissues88,201,202. Animal models can therefore be valuable 
for dissection of the relevant tissue, further facilitated 
by expression of fluorescent markers that enable isola-
tion of specific cell populations. Enrichment of specific 
cell types is especially important for epigenetic profiling 
in heterogeneous tissues such as the pituitary23,203, where 
the gonadotrope cells make up only a small percentage 
(3–10%) of the gland137. Without such isolation of the 
particular cell type, erroneous assumptions about dif-
ferential epigenetic modifications can be made follow-
ing changes in the relative population sizes rather than 
epigenetic changes per se in the cells of interest.

Animal models also present some of the complex-
ities of the physiological and metabolic backgrounds 
that might mediate the adaptive response. Their ener-
getic state can be manipulated, to some degree, to mimic 
specific human environments, although the parallels 
here are clearly limited, and new animal models that 
more accurately represent human biology are needed. 
Among rodents, the spiny mouse (Acomys cahirinus) 
is unique in experiencing human-​like menstruation, 
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Fig. 4 | integrating experimental approaches to understand the role of the epigenome in adaptive reproductive 
strategies in humans. (Step 1) Association of methylation data with reproductive phenotypic variation in human cohort 
studies can be combined with (Step 2) animal models to verify modification in the functional tissue. (Step 3) Cell models 
can then be used to characterize the chromatin at this genomic region and determine the genes that are affected. (Step 4) 
Subsequently, in vitro studies, preferably at the single-​molecule level, can reveal the actual function of the epigenetic 
modification in terms of structural characteristics of the nucleosome, transcription factor binding and progression of the 
polymerase along the DNA. Understanding phenotypic variation in reproductive function and how this is determined by 
early-​life experiences through changes in the epigenome will inform the clinician and could lead to novel approaches for 
intervention of reproductive function and associated health benefits.
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and also postnatal maturation of the adrenal zona 
reticularis, mimicking changes in circulating adrenal 
androgen levels that occur during adrenarche204,205. 
Such characteristics suggest that this species might be 
more suitable for the study of reproductive and adre-
nal function than commonly used rodent models. 
Mouse lemurs (Microcebus spp.) have also been her-
alded recently as a particularly suitable new model 
for studying human physiology and disease206,207; they 
share the advantages of mice, owing to their small  
size, breeding rates and capacities, but, as primates, are 
genetically closer to humans.

Adopting new research models presents many techni-
cal drawbacks and hurdles and ethical opposition, espe-
cially for primate research207. However, the information 
that appropriate animal models can contribute to identi-
fying the mechanisms responsible for adaptive responses 
is invaluable, as evident in our preliminary work on the 
Bangladeshi migrant populations in which we integrated 
findings from methylation analysis of human buccal 
DNA and a mouse model of early-​life stress to mimic 
challenges of the Bangladeshi environment. In this way 
we were able to identify altered epigenetic signatures of 
several genes that regulate ovarian follicle recruitment 
and appear to explain the depleted ovarian reserve in 
the women who spent their childhoods in Bangladesh 
(B.B.-​S. and colleagues, unpublished work).

Determining a function for the epigenetic modification. 
Given the constant dialogue between the epigenome and 
reproductive axis, it is important that we verify whether 
a particular modification that is differentially associ-
ated with a phenotype has a functional consequence. 
Discerning the importance of differential modifications at  
a specific genomic locus is usually challenging unless 
found at known gene regulatory enhancers or promoters, 
which is highly indicative of function. Understanding 
the role of a modification on the expression of a particu-
lar gene requires knowledge of the chromatin landscape 
governing its transcription. High-​precision mapping of 
the nucleosome positions, identification of the regula-
tory proteins that bind this genomic region and how 
this binding is altered by the modifications, as well as an 
understanding of the higher order chromatin structure 
and the role of long non-​coding RNAs, all need to be 
considered (Box 1). An overview of these techniques is 
beyond the scope of this Review, but it should be empha-
sized that chromatin organization at gene regulatory 
regions can vary considerably between expressing and 
non-​expressing cells, as at the Cga proximal promoter, 
which is devoid of a nucleosome only in gonadotropes25. 
This type of analysis must therefore be performed in an 
appropriate cell type that normally expresses the gene 
of study.

Once the chromatin landscape is known, its manipu-
lation, (for example, using CRISPR–Cas9-​based target-
ing approaches) can be used to establish functionality in 
cultured cells, and potentially also in animal models208–210. 
For greater precision, single-​molecule approaches 
in vitro can reveal exactly how epigenetic modifications 
affect the interactions of packaging and regulatory pro-
teins with a specific DNA sequence. After reconstituting 

nucleosomes on the regulatory DNA to recapitulate the 
native chromatin landscape, the DNA can be ‘unzipped’ 
using an optical trap to reveal both the force of inter-
action on a piconewton scale, and the protein position 
on the DNA at nearly base-​pair resolution178,211 (Fig. 4). 
In this way, we have deciphered the function of H2A.Z 
at the gonadotropin genes25 and revealed how a tran-
scription factor binds chromatin-​packaged DNA at  
the proximal promoter of Lhb15,212. This approach has the 
further potential to assess how epigenetic modifications 
affect RNAPII progression along the DNA, the effects 
of DNA and histone modifications, as well as additional 
histone variants on nucleosome stability and mobility, 
and how these processes regulate the recruitment and 
effects of regulatory DNA-​binding transcription factors. 
Clarification of the impact of epigenetic modifications 
that participate in adaptive reproductive strategies at this 
level of resolution is essential to complete our under-
standing of reproductive plasticity and could facilitate 
the development of targeted approaches for modifying 
reproductive function.

Conclusions
The field of biological regulation is at one of its most 
exciting times. Human reproductive phenotypes are 
shaped by the environment, and adult reproductive 
function can be reprogrammed following events dur-
ing key developmental stages of early life, as discussed  
here. Moreover, there is an expanding list of ways in 
which the chromatin can be modified through newly 
discovered epigenetic modifications and regulatory 
non-​coding RNAs that alter chromatin structure, pro-
viding seemingly endless mechanisms through which 
physiological function might be modified in response to 
external cues. Challenges ahead include integrating the 
roles of these potential regulators into our understand-
ing of how the reproductive endocrine system operates 
normally and in adaptive responses to changes in the 
environment.

In a wider perspective, the environment in the deve
loped world has changed dramatically since the industrial 
revolution, and is continuing to do so as technological 
advances fundamentally alter our lifestyles. Changes in 
quantity and quality of our nutrition, pathogen expo-
sure, levels of physical activity and stress surely affect 
our physiology directly, but might also provoke such 
adaptive responses in reproductive function, with 
important implications for human health. Beyond deter-
mining the start and end of the reproductive lifespan 
and rates of fertility, consequences extend to the broad 
impact of hormonal exposure and epigenetic ageing on 
health and senescence more generally. Understanding 
these complex aspects of human health is thus crucial 
and will require extensive, multipronged approaches, 
as highlighted in this review. On the positive side, epi-
genetic modifications can potentially be targeted, and 
so elucidating the mechanistic basis of these adaptive 
processes at a molecular level could open the way for 
developing tools to modify a variety of reproductive  
phenotypes.
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